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1. Introduction. In the near-vacuum environment of space vehicles,
heat transfer to or from a given structure is predominantly a radiative
phenomenon. For relatively few cases, however, is the structural geometry
such that predictions can be achieved in a general form. The present paper
deals with an idealization of practical interest for which theoretical pre-
dictions can, in fact, be given explicitly. In the case under study, the
dependence of the heat transfer upon parametric values of structural
emissivity, absorptivity, and thermal conductivity is thus exhibited ana-
lytically.

We shall be concerned with a thin, conducting cylindrical shell, either
closed or open but of sufficient length that a two-dimensional idealization is
possible and heat transfer is calculated in a cross section. An external
source of radiation is assumed. The thermal conductivity of the shell is
known and the radiative emission from the inner and outer surfaces is
taken to be diffuse; also, no dependence on radiation wavelength is em-
ployed and a gray body type analysis is thus used.

Success in treating this problem becomes essentially a matter of solving
an integro-differential equation. Two further restrictions make the solution
feasible: first, temperature ranges should be sufficiently restricted that
perturbation methods apply; second, the radiative influence function that
is the kernel of the integral term should be amenable to analytic treatment.
The first restriction is made as an initial assumption; its validity for par-
ticular values of the parameters can be tested subsequently. The second
restriction leads naturally to the consideration of circular arc sections.

The resulting integro-differential equation has appeared in more or less
restrictive form in the literature. In a classical paper Jensen [1] studied the
heat transfer between two bodies of different temperature, one of them
entirely surrounding the other, and was led to an integral equation that was
formally similar. More recently, Frank and Gray [2] and Parkes [3] treated
simpler cases of the present physical problem. In each of these papers an
eigenfunction type analysis was used which resulted in infinite series solu-
tions following quadrature of the radiation source function. The present
results extend the generality and show that the series can be summed. The
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method of attack is a natural extension of the tochnique employed by
Heaslet and Lomax [4] to study nonconducting structures, namely, the
reduction of the governing equation to a higher order differential equation.
Here, and in [4], inversions are given that are apparently novel. E. M.
Sparrow [5] has recently studied radiating, nonconducting ecylindrical
surfaces by analytical methods similar to those employed in [4]. Sparrow’s
work, which came to the author’s attention during the editorial review of
the present paper, treats both diffusely and specularly reflecting surfaces.
Important symbols to be used are listed below:

a radius of cylinder cross section (Fig. 1);

B(8) ecnergy flux (cal/cm’sec) leaving a surface;

f(8) incident radiation (cal/cm’sec), normal to surface, from
external source;

F(6) f(8)/oTy";

H(8) energy flux (cal/cm’sec) impinging on a surface;

o —1
k thermal conductivity [( cal 2) (E) ];
sec em?/ \em

N @’ T/ ki; '

t thickness of cylinder wall (Fig. 1);
temperature;

To average temperature, see (6b);

u r_ 1;
T() ’

@ absorptivity, outer surface of cylinder;

absorptivity, inner surface of cylinder;

see (10a);

(f, g) see after (15);

emissivity, outer surface of cylinder;

emissivity, inner surface of cylinder;

see (10a);

Stefan-Boltzman constant;

angular extent of cross section of cylinder (Fig. 1).

S0 B

1o
<

2. The governing equation. We take the basic configuration to be a long
shell with cross section specified as a circular arc. Fig. 1 shows a section
normal to the axis of the cylinder. It is assumed at the outset that differ-
ences can exist between the constant absorptivity « and emissivity e of a
surface, thus allowing for the possibility of a high temperature radiation
source and a surface emissivity corresponding to a much lower tempera-
ture. Subseripts 1 and 2 are used to denote conditions on the outer and
inner surfaces, respectively. The thermal conductivity & of the material is
assumed constant throughout. We assume #/a << 1 and proceed to the
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development of a thin shell theory in which the gradient of temperature
through the shell is neglected. The angular coordinate 6 is measured from
the axis of symmetry of the are, positive values corresponding to a counter-
clockwise rotation. Thus over the full extent of the shell 8 covers the range
from —y to .

The governing equations are derived through consideration of the cle-
ment of area shown in Fig. 2. For unit depth normal to the plane of the
element, the following balances oceur:
external face

(1a) Bi(8) = eoT"(8) + (1 — a)f(6);

internal face

(1b) Ba(8) = eoT(0) + (1 — o) H(0);

energy balance within skin

(le) d <_ ;f ‘%) + [Bi(6) — J(8)] add + |Bo(6) — H(8)]a db =0,

In (1a), Bi(8) is the energy flux (cal/em’sec) of diffuse radiation from
the external face. This flux is equal to the emissive power of unit
area according to the Stefan-Boltzmann law, ecT%(8), plus the reflected
portion of the incident radiation flux distribution, (1 — a1)f(8), where
f(8) is measured in cal/cm’sec. The reflectivity factor p; = 1 — o holds
for opaque surfaces.

In (1b), By(6) is the energy flux from the internal face. This flux is
equated to the emissive power per unit area, es7*(8), plus the reflected
portion of the incoming flux from within the enclosure. The incoming flux
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of radiation is denoted H»(6) and is given by
¥
(@) Ha(6) = [ Ba(0) P,

where the integral sums the contribution of emission from elements of are
along the inner face of the enclosure and dFs 4, is the conventional angle
factor that measures the intensity at the position @ of the emission from the
surface element at 6; . Equation (2) implies that there is no radiation
impinging on the cylinder from the left in Iig. 1. If it were desired to include
such a feature, it would be necessary to add terms to (2) which would take
it into account. This would necessitate some care being taken in the treat-
ment of possible shadow zones in the interior portion of the partially open
cylinder, but the nature of the analysis remains essentially unchanged. For
a cireular arc the two-dimensional angle factor for diffuse radiation takes
the particularly simple form

¢ — 6

dFys, = Lsin -

4

i,

where the bars denote absolute values of the argument. Equations (1b)
and (2) thus combine to yield

1 —

04 ¢ ‘ - ]
ot / Bg (91) sin 0—01
4 Ly

. dey .

(3) By(8) = e oT*(8) + 7

Equation (1¢) represents a balance between conduction and radiation.
The first term is the difference between values at 6 and 6 + dé of the con-
ductive energy transport, as given by Fourier’s law, along the interior of
the shell. The additional terms yield the energy per unit time transported
by radiation away from elemental portions of the exposed surfaces.

Equation (1b) yields the relations

e oT*(8) — s B:(8)

(4) B:(8) — Hy(8) = e20T*(8) — oz Hy(8) =

1 - Q2
and these, together with (1) and (3), give
kt &'T € . . ]
l:;l?_, aﬁ - <€1 + 1= a2> ol (0) + alf(g)
¥ !
_—a2€2 4 1—0@] } . 0—01‘
~1_a2gT(9)+ 1 _WI: smi 5 |d01

where the expression within the brackets in the integrand is the expression
that appears within brackets on the left side of the equation (with 6
replacing ).
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Equation (5) is the integro-differential expression that governs tempera-
ture distribution for a preseribed input of radiation f(8). Nonlinear analysis
is obviously required in general. However, for physical problems in which
the magnitude of 7'(8) has a restricted variation, linearization of the equa-
tion is indicated. To this end, we first introduce the dimensionless variable

T

Ty
where T, is the average temperature of the cylindrical seetion:
1 (1) 1 f¢
. A AN e L 1 = 1.
(6b) s, T, 59 _‘P( +u)ds =1
Assume now that
4
(7) <Z> =1+ 4u
T

is an adequate approximation. This can be examined a posteriori by inspec-
tion of the solution. Using the approximation of (7), one gets the linearized
form of (5) as

d2u €9 ) ]
l:w —4N<61 + 1 — @, u +N0£1F<0)

o9 €2 _l—az‘[\b . 1 _
(8) +4N1_a2u i ‘&li ]s1n§[0 6, | do,

= Neas + N(1 — o) <e1 + )coslw coslﬁ,
1 - &2 2 2

where F(6) = 7(8)/ocTs', N = a’sT,'/kt and, as previously, the terms

within the brackets are functionally the same. The parameter N pro-

vides a measure of the relative strengths of radiation effects and thermal

conduction within the shell. This is more apparent when it is written in the
form N = (acTo")/(ktTo/a).

Equation (8) is to be solved for u(8) as a functional of f(8). Two bound-

ary conditions are needed since the equation contains a second-order

differential. These conditions arc obtained by imposing a radiation condi-

tion at the extremities of the shell. Then, at 8§ = £y, —Ig % = eoT't. If

t/a < 1, this becomes, using (6a) and (7),

(9) j—g = —Ne (%) (1 + 4u) = 0.
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The necessary boundary conditions might also be obtained by prescribing
the fixed temperatures 7, , T; at which the ends of the arc are to be held.
In this case the conditions are

(9a) () =%—1, u<—¢>=§—§—1.

The solution of (8) subject to the end conditions of (9) can be attained
through a reduction of the integro-differential equation to a linear differen-
tial equation. Operating upon (8) with (D° + 1) where D = d/d6 we get
the fourth-order cquation

{D4 — [4N(61 4 ) — %:l D’ — Ne, el} u
(10)

_ 2 % ___1_ @3 €2
= N"‘<D+4)G iV

where G(6) = F(0) — L (el + 1 £ - ) . The increase in order of the result-
) - 2,

ing differential equation introduces two additional arbitrary constants in
the solution. No additional conditions are required, however, since the
values of these constants will be fixed through substitution of the general
expression for u(8) into the governing equation (8).

3. General solution. In this section we give the solution for {8), together
with the boundary conditions (9), in the case of arbitrary angle ¢ (see
Fig. 1). When this general solution has been determined, it will be spe-
cialized, in the following section, to the case of a complete cylinder, ¢ = ,
for which some numerical results will be given.

The first step will be to factor the quartic differential operator appearing
on the left in (10). We write that equation as

[(D* + ¥")(D* — B)]u(6)

1
= —Na (DZ + ‘f) G(0) — g Ny==,

1 —

(10a)

where

v = —HaN(a + &) — /4 — (AN(a + &) — /4] + 4awN)""} >0,
B =7+ 4(a + )N — a/4,
(a2/4 + ') (/4 — V') = Naer,

2.2
vB = Neaas.



142 MAX A. HEASLET AND FRANKLYN B. FULLER

The last two relations are useful in the algebraiec reductions. Operate on
(10a) with the inverse [(D* 4 »*) (D® — £°)]"; there results for the coeffi-
cient of G(86)

[2 4] N (V2 _ a2/4

_ aN (V' — /4 B+ /s
V2+62 D2+V2 .

(11) g

+

Interpreting this operational form, we are led to the particular solution

2 ) v
uy(8) = — Zai{_N@ l:v o/t _[ G(6,) sinv |6 — 6, db;
(12)
.B + 0‘2/4 v E2/a2
+——-~f G(6:) sinh 86 — 6, | d01:| 4(1_—‘04_2)'

To this particular solution we must expect to add complementary solu-
tions

(13)  wu,(8) = Ajcos vf + Bysin v8 + A, cosh 86 + B, sinh 8,
so that the complete solution of (10a) is
(14) u(0) = uy(6) + uc(6).

The arbitrary constants 4, , A, , By, B; are to be determined by resubstitu-
tion into (8) and by use of the boundary conditions at § = 4y given by
(9). Further, the value of 7% can be determined by an application of (6b)
to the final form of the solution.

First, let us note the result of substituting the value of u(8) given by
(14) back into the integro-differential equation (8). In the present nota-
tion, the latter equation is

(D* + ' — 8 — ax/4)u(8)

1—a2f“ s B =V a/t — 4B 1
(15> - T L, D - 1 — @ u(ol) Sln§|0—91| d01

. '4
_ —Nal[G((?) -1 . a"’f_\b(}(el)sinélo—olld&] —N e

— a2

The result of the substitution is a pair of linear equations involving the
arbitrary constants A, B, of (13). It is convenient to introduce the nota-

tion AU(Y), g(¥)) = f g

S 4
g

, where f, g arc functions of , and the prime

denotes differentiation with respect to ¢. The two linear equations are
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A(cos w, sin 1Y) A(cosh B¢, sin Ly)
2 as/d — 2 A+ 2 w/d+ &

- 1 €9 1
— &;;<€1+1—a2)0085¢

As

(16e) Ny [Alsin vy, sin 39) [*
Na sin w), sin 4
— 3 +1132[ . z f—w G(8;) cos v6, dby
- . 1 ;p
_ A(sinh /31{/;, sin 1¢) " G(8:) cosh 56, dGl‘l
vTy
and
A(sin wf, cos 3y) A(sinh Y, cos 3¢)
2 POz g B, +2 /4 B B,
_ _ Na A(cos v, cos 3p) ¥ .
(16b) = aIp [— ; Lb G(6,) sin v, dé,

n A(cosh gy, cos 3¢) fv G(8,) sinh 6, del]-
B = 4

The other necessary equations are found by applying the ‘“radiation
boundary condition” of (9) in the form du/d8 = 0, § = +y. The deriva-
tive of the complementary solution is

du,

(17a) ;i v(—A; sin 9 + B; cos »8) + B(A;sinh $8 + B, cosh 86),
and the derivative of the particular solution is

dy,  aN [V — m/t f‘” 3 B

B AT BZ[ 5 _¢G(01) cos v(8 — 8,) sgn(6 — 6,) doy

(17b) e
+ @__+2_a2/_ f_w G(6,) cosh B(6 — 6) sgn(9 — 6;) dol:l_

Now, since we wish to evaluate the derivative at § = =y, we note that
sgn (¢ — 6,) = +1andsgn (—¢ — 6;) = —1, so that the second pair of
equations for A;, B, can be written:

—vsin(m)A; + B sinh(BY)A; + v cos(»w) By + 8 cosh(By)B,

2 v
(18a) = VZA—riixlﬁ‘l |:V _2a2/4 f_w G(6,) cos »( — b1) db;

5 ¥
+ [3'_-{—_53/_4 [ G(fh) cosh .3(‘[/ - 01) dal];
2 '
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and

vsin(my)A; — Bsinh(By)A, + v cos(wy)B;: + 8 cosh(By)B,

2 ¥
(18b) = _ﬂ:‘l& [V 2(%2/4 Lo G(0r) cos »(¥ + 61) dbs

2 v
-+ §+Ta2/4 /;ﬁ G(6,) cosh gy + 61) d(h].

It is convenient to add and subtract (18a, b) to get two separate sets of
two equations each for the even components (A4; , As) of u, and for the odd
components (B, Bs). Thus we get

v sin(wp) A — Bsinh(By)A,

2 ¥
_ Noy [v 2a2/4 f G(6,) cos wp cos vy db;
—y

(19a) 2+ B
2 ¥
+ %%L f , G(6,) cosh By cosh 6, del]

and

2
v cos(w)) By + B cosh(B) By = — 8 [_ V' — an/d

v? + B2 2

(19b) '

2 v
;bG (61) sin »y sin »8; d6: + {%0‘2/4 f ((6,) sinh By sinh 6, d&l].
- —y

Equations (16a, b) and (19a, b) suffice for the determination of the four
constants Ay, Ay, By, By . There remains the matter of determination of

¥
the average temperature T . From (6b) we have f w(0) d6 = 0. Substi-

tution of the solution given by (14) yields the equation
_ o sin(w) sinh(8¢) , N [_a2 v 4 8
L B T
a2/4

¥
(20) - f—¢ G(6,) dé, + f F(6:) cos » cos vo; db:

21—'(12

Since 4, , A, are now known, and F(0) = f(8)/¢Ts', (20) will give a rela-
tion from which 7, can be found. This completes the derivation of the
general solution. A summary of the formulae needed for the solution of the
integro-differential equation (8) is given in the appendix.

a2/4 + g f F(8,) cosh 8¢ cosh g8, del} + v _ela
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4. Circular cylinder in uniform radiation field. We now specialize to the

case of a complete closed arc ¢ = x and further to a uniform and parallel
field of incident radiation. Then for the forcing function we have

rcosO if |6]= 32—r,
(21) f(6) = eJ
. w
Since the input is symmetric in 0, we can expect that B, = B, = 0 in the
solution. Equations (16a) and (19a) for determination of 4;, A, become

v sin v __ @B sinh Br
o/t — 2T /At B

_ Na _ 1 € sin 2y _ sinh 2;31r>
(222) = ﬂm[ 2 < o )( " 8
. <cos ¥ COS ; x  coshfBr cosh§1r>:|
T o T 1—» 1+
vsinyr A; — Bsinh Br A,
N €OS ¥ COS = T
_ New [e (. _L_<%+ﬁz>
v+ g2 eTot 4 1 —? 4

8
.costhcoshir}__l_< Lo )[ %_v2>5in2wr
Trr )@\t G "

_ (% + Bz) sinhB2B1r:|}.

The solution of this pair of equations for 4; and 4, yields

A = Noy (gz_v)cotwr
YT eyp\d ),

(232) [ cos

A

and

(22b)
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and

_ Na coth gr
Az“u“rﬁz( +B> B

(23b)

B
‘__COShir_l 4 € )sinhﬁr
aTet 14 32 o “ 1 - a? 8 '

Equation (20) for the determination of T gives

(24) p=2_° or ol = (9‘—1> ¢.

€1 0’T04 €1 ™

It is interesting to note that this relation follows much more easily from
an over-all power balance for the cylinder, considered to be at the uni-
form temperature T, : power input = e-(2a)-ax and power output
= ¢-0Ty'-2ma, so that, as before,
(J'T()‘1 = 95_1 g .
€ 7

Equations (23a, b) for 4; and As serve to determine the portion u.(6)
of the entire solution. We must next write the expression for the particular
solution u,(8). Using the function f(8) defined in (21), and substituting
in (12), we find

up(8) =

O’T V2ai|_N;32 <a2/4 7 fq cos fysinv |0 — 8| dfy
0

2y T

2
4+ (7 : 1
_?Z/_zﬁiﬁf_; 005015111h6|0—01|d01> — 1

Nop 1 € v — ay/4
+ V2+ﬁ?a—1 (el -+ - a2> < s cos vy cos vl

042/4+5
e

The integrals appearing in this expression will differ accordingly as 8 is
less than /2 or greater than /2. The result is, considering 6 to lie in (0, )
only, because of the even symmetry,

cosh g7 cosh ,30>
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( .
s ” sl g cosvf — v cos §
T Now |2 —» <
Up = ai/a v:+ B2 4 2
? ' 2y 1 — % cos T sinw J
2
. PBr
a 2 sinh —-cosh 88 — fcos 8
+ 8 [qm 5 ]
(25) — 4 _ 2 - —_
28 14+ 4
L cosh 67” sinh 38 ‘
Nap 1 € - as/4
+m;1(el ~+ 1 _a2>< = €OS »w COS v
/44§

I cosh B cosh B(}) .

The upper set of results holds for 0 < 9 < g and the lower for%r <6 =

The two parts of the solution, u,(8) and u.(8), ean be combined to give

o cos vl _
I Jlf - [ Zsin Gm2) 7" ”1
T ;I_VZLCOSV(T—a) J
2sin (vwr/2)

cosh (39
2+ # | st ey + 80|

+ & Lcoshﬂ(w—@ J B
2 sinh (8r/2)

(26)

_'_

W] =
—_
W |-

where once again the upper formulae hold for 0 < 6 < T and the lower for

g < 6 = 7. We note that the temperature difference between horizontally

opposed points on the shell is particularly simiple:

7 E / 2
(273) w8 — u(xr — 8) = mNe (“2/4 L ”) cos 8

P+ E\N 1+ 1—

_ N L cos @
27b - )
( ) ai/a 14 4Ne + 4Ney

1 — 02/4

The maximum temperature difference occurs when 6 = 0.
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It ean be scen that if the conductivity is neglected in the formulation
of the present problem, then from (8) the problem reduces to that of solving
an integral equation that is linear in T%(8). It is interesting to determine
whether the solution to the more general problem, given by (26), reduces
properly in the limit £ — 0 to the solution of the simpler problem. In this
limit N — o,

3 1 €1 (o

B 2
(28) Y —4(e; + e2), and v — iotea

Using these, together with the approximation (7), in (26) we find

T\ .
<T) =1+ 4u

- 2
11——-(11;44 cos 0 + a21/4_—1/2v COSVVB
(29) 2v Sin § s
.
a+ e /4 — v eosv(r —8) |
1 _— V2 .V
] 2v sin 5 T ]

which is just the answer obtained by solving the integral equation for
(T/To)* with the above definition of »”.

A difference between the exact and approximate results will now arise
from the different approximations of 7/Ts as (1 + 4w)"* and 1 + w. This
circumstance suggests that for the low values of thermal conductivity,
when N — «, a new approximation might be useful. Thus let us “linearize”
in terms of T" taking as a new variable r = (T/ To)*. The linearization
now involves the approximation of

& army = Lo sermy [ & amo |
dg? 4 de? dé
. d ! d*r . .
by the single term 7 (T/Ty) = idE Unfortunately, it seems difficult to

justify this approximation since the second derivative d’r/d6° vanishes in
the range of interest, while the derivative d(T/T,)/d8 does not. It might be
noted, however, that in the event N — <, which is the case when con-
ductivity is low, the derivative term in (5) is divided by the large number
N and so it may not matter greatly that the approximation is not as good
as 1t might be.
: : L . 1d'r

If (5) is solved using the approximation 77 (T/Ty) = 1 where

r = (T/To)", the result is 7(8) = (T/To)* = 1 + 4u(8), where u(9) is
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given in (26). The expression for temperature is now
(30) T/To = (1+ 4u)'"

The linearization used previously (see (7)) led to a truncated expansion
of (30):

(30a) T/To =1+ u.

It is now suggested that formula (30) be used whenever conductivity is
small. The value of conduectivity k& at which (30a) ean be used may be
decided by a comparison of the two results in any given set of cases with
varying k. This matter will be illustrated numerically in the next section.

Next let us consider the case of very large conductivity k. The param-
eter N — 0 and from the definitions of »* and 8° (see (10a)), we have
v — an/4 and 8 — 4N¢ . Hence for k — o,

[ cosh 89
0
9 sinh %1; =+ B cos

u(9) = ne ]imy
N-0g cosh B(x — 6)

M|

., Bw
i Slnh ? ]
- e lim\/N_< _ 1 _>~
N0 24/¢ \2 sinh 7v/N¢
= 0.

M| —

This result is in agreement with physical reasoning, because material of
infinitely high conductivity will have a uniform temperature, and this must
be just T, the value derived above on the basis of simple equilibrium con-
siderations.

5. Representative results. As data for obtaining some numerical results’
the radiation field was chosen to correspond to that of the sun at about the
distance of the earth therefrom. The value of the constant e in (21) is then
the solar constant, which we take as e = 0.033 cal/cm’sec. The dimen-
sions of the cross section were chosen to be ¢ = 50 cmand £ = 1 cm. The
value ?f the Stefan-Boltzmann constant is ¢ = 1.39 X 107 (cal/cm’sec) -
(°K)™.

There remain the absorptivities, emissivities, and the conductivity to be
chosen. As an example, let us consider the effect of varying conductivity
from a value of 0 to higher values, while keeping the radiation parameters
&, o, e, o fixed. Choose first ¢ = 0.2, o = 0.5, & = ap = 1. The distri-
bution for £ = 0 is found from (29), and we note that the slope of the
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temperature distribution is discontinuous at § = T A graph of this tem-
3 grap

perature variation with 6 is shown in Ilig. 3, where it can be seen that the
point of discontinuity is also the point of minimum temperature. In this
casc of no heat transfer by conduction, the rear of the cylinder can only be
heated by radiation from the interior of the forward portion, and it is clear
that the top and bottom portions (8 = sx/2) are least favorably situated
in this respeet. This applies, of course, in the present instance of an oncom-
ing parallel field of radiation impinging upon the forward portion of the
cylinder.

The ability of the material of the cylinder to conduet heat will amcliorate
this effect, as can be seen in I'ig. 3, where curves for positive values of k
also appear. These curves were caleulated with the modification suggested
in (30). The slope of the temperature distribution is now continuous at

g =1

2 2
fact, increasing conductivity soon masks the entire effect, and for some &
slightly greater than 0.1 (Fig. 3), the minimum temperature occurs at
6 = 180°. Higher valucs of & tend to decrease the total variation of tem-
perature which approachces, as we have scen, the limit 7 = Toas b — oo,

It is of interest however to inquire somewhat more closely into the pres-

and the minimum temperature no longer oceurs at this position. In

ence of & minimum temperature between 6 = g and § = =. If we differen-
tiate (26) and set the derivative to zero, we find that there is & minimum

inT < 0 < if the following equation has a solution:

2
l_yz%—f—[f sin %
sin —9) = sinl —8)
(31) Al ey el LS
4‘ — ¥V Snlhg

= K sinh 8(«x — 8).

Consider the behavior of each side of this equation near # — 8 = 0. The
left side starts as f.(8) = v(r — 6) and the right as fz(8) = KB(x — 8).
From a sketch, one easily sces that because of the behavior of the sine and
the hyperbolic sine there can be a solution only in the event that

(32) v > KB.

This is the criterion which determines whether conduction of heat smooths
the distribution of temperature in the ring so that the minimum tempera-
ture occurs at the rearmost point 8§ = x. Use of this criterion gives results
in agreement with those obtained visually from Fig. 3; the critical value of
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F16. 3. Variation of temperature distribution with conductivity k; oy = 0.5, & = 0.2,
a = e = 1.

k, where the distribution ceases to have its minimum ahead of 6 = u, is
slightly less than 0.2.

6. Accuracy of approximation as shown by numerical results. The
results for T/To for the cases studied above and calculated with T/T,
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T1g. 4. Comparison of two approximations for T/T,
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= 1 4 u are shown in Fig. 4. From these, the value of u(6) can be read
directly, and it is seen that even for the low conductivities its value is rea-
sonably small (less than 0.07). It appears reasonable to accept such results
and neglect the nonlinear terms. One should note, however, that this con-
clusion applies for a particular pair of values of & , o, . Higher values than
the ones used here lead to larger values for u(8), and each case should be
examined on its own merit.

Some results from Fig. 3 are shown in Fig. 4 as dashed lines to give an
idea of the range of applicability of the suggested improvement of (30).
We see that the employment of this approximation improves the caleula-
tions considerably for low values of conductivity while making little
difference for the high values. Thus the use of the fourth root approxima-
tion rather than the linear approximation seems to render the solution
uniformly valid in k.

APPENDIX

In this appendix we give in collected form the integro-differential equa-
tion, its solution, and the necessary auxiliary formulae.
The equation to be solved is

d*u
W—4N(E1+€2)u
(A1) —L"—‘”fw[d—i'f—w + 2 u]sinljo~a|da
PR Y T2 R 2 e

. 1—a [* 1 a €
= ——Z\/al‘:G(G)— 1 ‘[_‘#G(Bl) smglﬂ—(hldﬁx]—N .

1 — 2
The boundary conditions are

du
(A2) 6_16_0 at 0 = .

The solution is
(A3) u(8) = u,(8) + A, cos »8 + B;sin»8 4+ A, cosh 88 -4 B;sinh 89,

where

2 / ¥
- [ [e s 0 -

? v
+ éji;_ﬂ/é LG(el) sinh 80 — 6 | de,] +;1i w/a_

1—‘(12
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2 2 .
The constants »°, 8 are given by

2

(A3b) v' = HAV[4N(er + &) — aw/4P + 4 N — 4N (a + ) + a2/4},
B =7+ 4N(a + &) — m/d

For the boundary condition (A2), the equations for the determination of
the constants 4., B; are:

Alcos w), sin 3¢)

A(cosh B¢, sin 3) 1,

A .
w/t — v A B
_ 1 €2 o1 Na; [ A(sin vy, sin 3y)
T 2me (61 + 1 - ag> (()DQ’J/ v+ B-’I: 2y

o Y ¥
A(sinh %&ﬂiw G(8,) cosh 6, d01:|;

NC!1 I:V2 - a2/4
v+ B 2

¥
(Ada) - f G(6)) cos vby dBy —
—y

vsin wp Ay — Bsinh By A, = —

12 2 o/ 12
f G(8y) cos vy cos vl db, + B—_*—)Ljf G(6,) cosh By cosh 36, d@l];
—y 2 -y

and
A(sin wp, cos 3y) A(sinh gy, cos )
az/éi — 2 By + ax/4 + 3 B,
_ _ Noa | A(cos v, cos W) ¥ .
B 3 + 62 [ 5 [.p G(al) sin v6; d01
1 4
(Adb) — Alcosh 8 cos ) [* (4, sinh o del} :
23 —y

v cos vy B1 + B cosh B¢ B, =

_ Noq [a2/4 —_ V2
i 2

v 2 Y
. f G(6;) sin w sin »6;, do; + “2/4# f (1(8,) sinh B¢ sinh 86, dol].
_.‘l, 2

9, , where the primes denote derivatives

Note that A(f(¥), g(¥)) =

f,
i
with respect to ¢.

If boundary conditions different from (A2) are desired, the requisite
modifications are made to the second equation in cach of the sets (Ada)
and (A4b). The first equation in each set is a consequence of the method of
solution (by reduction to an ordinary differential equation of higher order)
and thercfore does not depend upon the boundary conditions.
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Some of the integrals which arise in the calculation of this solution are
listed next. They are of interest in themselves, in addition to their utility
in the solution of integral equations with kernels like that of (Al). In these
integrals, the variables 6, 6; lie in the interval (—y, ¢)

[v cos af — Alcos o, sin ) cos v8].

2

v
[cOSaolsinvlo—Olldz?l:
v

_a2
v

[ cos oty sinh g |0 — 6, | do,
(2

= ﬁ_%__? [—B cos af + A(cos ay, sinh B¢) cosh 86].
a
v
[ sin oy sinv |6 — 6; | d6;
14

[» sin o + A(sin oy, cos ) sin 48).

DZ_a2

v .
[sina|02—01|sinu]0—01[d01= 22 _[vsina |8 — 6]
¥ Ve —

— asiny |6 — 6;| + A(sin w, sin aaf) cos »8 cos af,
+ A(cos w, cos a) sin »6 sin afy).

Further combinations involving hyperbolic functions can be found by
giving imaginary values to the parameters » and «; for exanple, the second
formula above follows from the first by putting » = 8.
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